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Scale-free networks history

Introduced by Price in 1965 for citation networks

Rediscovered by Barabasi and collaborators around 1999

“Barabasi’s bandwagon”: discovery of the scale-freeness of a lot of networks,
like the WWW, social networks, biological networks

D.Price A.-L. Barabasi
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Definition of scale-free network

Degree distribution: distribution of the number of connections per node

Scale-free networks have power-law P(k) = k�� degree distributions

Example of a scale-free graph Degree distribution of a scale-free graph
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Properties of scale-free network

Presence of hubs with large degree

Small radius/diameter

Small number of edges

Robust to random node failures

Easy to disconnect
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Advantages of scale-freeness for control design

These properties may bring advantages for control design [3]:

Hubs �! Localised control

Small distances �! All nodes are easily reachable with few inputs [6]

Few edges �! Sparsity of the problem [5]
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Network partition

A network partition is a partition of the node set.
From this partition we derive a reduced network
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General problem

Partition a network towards a scale-free structure to take advantage of the
properties. We also want to preserve a certain similarity.

Given a graph G0 find G? solution of the following minimisation problem:

G? = arg min
G

JSF�
(G ) + Jsim(G ;G0) under constraints on G (1)
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Main idea

General algorithm which can be used for any particular case of the general
problem.

Consists in iteratively merge a pair nodes in the network.
The algorithm does not provide an optimal solution of the problem.
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Merging

We merge two nodes into asuper-nodeand we preserve the connections with the
other nodes. The weights on the edges are recomputed.

We noteGi $ j the network obtained by merging (i ; j ) in the networkG
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General algorithm

INPUT : initial network G0, scale-free coe�cient�
while : stop

I (i ; j )  edge maximising JSF� (Gi $ j ) + J sim(Gi $ j ; G0) under constraints
I Gk+1  Gi $ j

end

OUTPUT : Final networkGk�nal
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Example of algorithm

INPUT : initial network G0, scale-free coe�cient�
while : stop

I (i ; j )  edge maximising JSF� (Gi $ j ) under jxi � xj j < �
I Gk+1  Gi $ j

end

OUTPUT : Final networkGk�nal
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Steady-state

x? = P> x? (2)

with P the row-normalised adjacency matrix:

Pi ;j =
Ai ;jP

k
Ai ;k

;
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Speci�c problem for steady-state preservation

Given a graphG0 �nd G? solution of the following minimisation problem:

G? = arg min
G

JSF� (G) + J sim(G; G0) under constraints onG (3)
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Speci�c problem for steady-state preservation

Given a graphG0 �nd G? solution of the following minimisation problem:

G? = arg min
G

JSF� (G) under x?
G � x?

G0
(4)

18 / 30



Weight computation
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Weight computation
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Weight computation
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Weight computation
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Other properties

Within this approach we can also preserve:

Flow property
"What goes in goes out"
1A = 1A0

Total massP
i ;j A0(i ; j ) =

P
i ;j Ared(i ; j )
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Simulation for steady state preservation
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Model reduction

Model reduction

Σ : ẋ = Ax + Bu Σ̂ :

{
˙̂x = PAPT x̂ + PBu

x = PT x̂
(5)

x 2 Rn

x̂ 2 Rm

� = n �m is the reduction
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Transfer function minimisation problem

Given a graph G0 find G? solution of the following minimisation problem:

G? = arg min
G

 JSF�
(G ) + kg(s)� ĝ(s)kH2 (6)

where g and ĝ are the transfer functions from u to x and from u to x̂ respectively
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Algorithm

INPUT : initial network G0

while : stop
I (i ; j) edges minimising  JSF� (G) + kg(s)� ĝ(s)kH2

I Gk+1  merge (i ; j) in Gk

end

OUTPUT : Final network Gk
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Numerical result

TOP: kg(s)� ĝ(s)kH2 in function of � for different value of 
BOTTOM : Degree distribution for different value of 
In blue :  = 0 (only similarity cost function)
In yellow :  =1 (only scale-free cost function) 27 / 30
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Summary and future work

Summary

We developed a general algorithm able to reduce network into a scale-free network
and able to preserve properties and a notion of similarity.
We presented two different implementations of this algorithm.

Future work:
Different similarity costs and physical properties

Applications to network control

Adapting to time-varying networks
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