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Scale-free networks history

@ Introduced by Price in 1965 for citation networks
@ Rediscovered by Barabasi and collaborators around 1999

@ “Barabasi’'s bandwagon”: discovery of the scale-freeness of a lot of networks,
like the WWW, social networks, biological networks

A.-L. Barabasi
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Definition of scale-free network

@ Degree distribution: distribution of the number of connections per node
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Definition of scale-free network

@ Degree distribution: distribution of the number of connections per node

@ Scale-free networks have power-law P(k) =k  degree distributions

Example of a scale-free graph Degree distribution of a scale-free graph
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Properties of scale-free network

Presence of hubs with large degree
Small radius/diameter

Small number of edges

Robust to random node failures

Easy to disconnect
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Advantages of scale-freeness for control design

These properties may bring advantages for control design [3]:

Hubs ¥ Localised control
Small distances ¥ All nodes are easily reachable with few inputs [6]

Few edges ¥ Sparsity of the problem [5]
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Network partition

A network partition is a partition of the node set.
From this partition we derive a reduced network
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General problem

Partition a network towards a scale-free structure to take advantage of the
properties. We also want to preserve a certain similarity.



General problem

Partition a network towards a scale-free structure to take advantage of the
properties. We also want to preserve a certain similarity.

Given a graph Gq find G solution of the following minimisation problem:

G? =argmin  Jsg (G) + Jaim(G; Go) under constraints on G (1)
G
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Tools to solve the problem
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Main idea

General algorithm which can be used for any particular case of the general
problem.

Consists in iteratively merge a pair nodes in the network.
The algorithm does not provide an optimal solution of the problem.
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Merging

We merge two nodes into auper-nodeand we preserve the connections with th
other nodes. The weights on the edges are recomputed.
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Merging

We merge two nodes into auper-nodeand we preserve the connections with th
other nodes. The weights on the edges are recomputed.

We noteGg ; the network obtained by merging {j) in the network G

12/30

N

=



General algorithm

INPUT : initial network Gy, scale-free coe cient

while : stop
(i;j)  edge maximising dr (Gis j) +J sim(Gis j; Go) under constraints
Gr1 Gis j

end

OUTPUT : Final network G,

nal
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Example of algorithm

INPUT : initial network Gy, scale-free coe cient

while : stop
(i;j) edge maximising &= (Gis j) under jxi  Xjj <
Gr1 Gis j

end
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Outline

Steady-state preservation
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Steady-state

X? - P> X')
with P the row-normalised adjacency matrix:
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Steady-state
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Speci ¢ problem for steady-state preservation

Given a graphGy nd G? solution of the following minimisation problem:

G’ =argmin  Jsr (G) +J sim(G; Gp) under constraints orG )
G
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Speci ¢ problem for steady-state preservation

Given a graphGy nd G? solution of the following minimisation problem:

G’=argmin  Jsr (G)  underxi x& )
G
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Weight computation
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Weight computation
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Weight computation
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Weight computation
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Other properties

Within this approach we can also preserve:

Flow property
"What goes in goes out"
1A = 1A°

tal mass

i AO(i;j): i Ared(i;j)
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Simulation for steady state preservation
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@ Minimising transfer function error
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Model reduction

Model reduction

Y : X = AX + Bu P

R = PAPTX + PBuU
{ (5)

x =PTx

X 2 R"
X2RM
=n mis the reduction
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Transfer function minimisation problem

Given a graph Gq find G? solution of the following minimisation problem:

G?:arggnin Jse (G) +kg(s)  §(s)km, (6)

where g and § are the transfer functions from U to X and from U to X respectively
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Algorithm

INPUT : initial network Go

while - stop
(i;j)  edges minimising Jsr (G) +kg(s) @(s)kn,
Gk+1  merge (i;]) in Gk

end
OUTPUT : Final network G
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Numerical result

TOP: kg(s) §(s)kn, in function of for different value of
BOTTOM : Degree distribution for different value of

In blue : =0 (only similarity cost function)

In yellow : = A (only scale-free cost function) 27/30
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Summary and future work

Summary

We developed a general algorithm able to reduce network into a scale-free network
and able to preserve properties and a notion of similarity.
We presented two different implementations of this algorithm.

Future work:
Different similarity costs and physical properties
Applications to network control

Adapting to time-varying networks
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